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ABSTRACT

Analysis of the cratering records on the Moon, Mercury, and Mars have shown similar

size-frequency distributions of craters produced during the late heavy bombardment of the

inner solar system (Strom, 1988). Venus provides a valuable data base of information on the

impacting population for more recent time. Because of resurfacing events, the Venusian

cratering record has been estimated to be only about 500 million years old, and for the most

part is in pristine condition, thereby producing an opportunity to discover the properties

(size/velocity distribution) of the objects that recently impacted its surface.

The Magellan IR mapping of the Venusian surface has produced an extremely high-quality

set of crater topographies. The observed deficit of small craters is qualitatively explained by

atmospheric effects on impactor breakup and the retardation effects of pressure on crater

formation. Information about resurfacing history and impactor flux population can only be

conjectured using arrant approximations for atmospheric effects on crater size scaling, such as

assuming the absence of pressure effects or using other ad hoc approximations for this

dependence. The recent work by Ivanov et al.(1986; 1992); Phillips et al.( 1991; 1992); Schaber

et al. (1992) and others support the notion that atmospheric effects may have strongly

influenced the Venusian cratering record. The work reported here looks at the potential

synergism of aerodynamic entry and the gas dynamic flow fields that govern during the time

scale and in the vicinity of crater formation.

_TRODUCTION

An essential requirement for proper interpretation of the Venus crater data set is better

understanding of the role of a dense atmosphere on crater formation. The first crater

observations were confirmed less than a decade ago and since then there have been a number of

crater statistical studies looking at surface age and impactor fluxes, but the role of a dense

atmosphere on crater formation and final crater size has never been accounted for.

Atmospheric effects on impact crater formation are very complex because they includes

asteroid interactions with the atmosphere that in turn may have a synergistic effect on crater

formation. The importance of atmospheric pressure effects has long been identified for

explosive cratering by a number of investigators including Chabai, 1965; Johnson et al., 1969;

Herr, 1971; Schmidt et al., 1986; Housen and Schmidt, 1990; Housen,et al., 1992; and Schmidt

et al., 1992; 1993. In particular, the work by Housen et al., (1992) provides the best correlation

and scaling for the role of atmospheric pressure for explosive cratering at various depths of

burst.

For impact cratering there is an additional synergistic effect of the impactor traveling

through the atmosphere prior to hitting the surface. This creates a strong shock flow field

setting up transient pressure and density variations across the surface. There have been a

number of experiments to isolate different aspects of the impact cratering process. In
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particular,small scaleimpactsfor pressuresless than 1 bar have been studied by Schultz and

Gault (1979), Holsapple (1980) and Schultz (1990b; 1992). In another approach, Schmidt (1992;

1993) has used shallow-buried explosives to simulate impact cratering using a pressure

chamber mounted on a centrifuge with pressure as high as 40 bars. We do not know how any of

these reported effects scale or if they important in the interpretation of the Venusian crater

record.

For large scale impact cratering these questions remain to be answered:

1) What is the shock pressure transient due to atmospheric entry?

2) What are the time scales of this overpressure compared to that of crater formation.

3) Does shock wave evacuate ambient gas?

4) How does disturbance scale with impactor size?

5) Effect of target boundary conditions?

6) Effect of entry incidence angle?

7) Does the transient crater lip lead or lag the dynamic pressure increase?

8) What is the overpressure and density at the ejecta plume leading the excavation?

9) Is there some time scale after which the remaining variation can be approximated by a

constant pressure and density; and

10) if so, are they higher or lower than the initial undisturbed values?

APPROACH

In conjunction with Paul Hassig of iMALL Inc., we modified the MAZe code to examine various

entry scenarios and simulation schemes. One of our objectives was to port the code to run on a

Macintosh at Boeing. This required quite a bit of extra work getting appropriate Fortran Update

routines, etc. As it finally worked out, we update the program library on a SUN workstation and

then compile on the Mac., not the most convenient but a workable solution using limited

resources. We obtained the basic MAZe from Defense Special Weapons Agency (formerly Defense

Nuclear Agency). MAZe is a CFD code developed to investigate the formation of dust, water, and ice

clouds from nuclear and high explosives , including fireball expansion, airblast propagation, and

boundary layer analysis (Hassig, et al., 1991, 1992). Its relevant capabilities include adaptive

zoning that automatically refines the grid where "needed" and TVD (Total Variation Diminishing)

finite differencing. It employs a linearized Riemann solver, is second-order accurate, and flux

limiting. Multiphase physics treats the mutual interactions between a gas mixture and the

solid/liquid particles contained in that gas. ALE (Arbitrary Lagrangian Eulerian) grid techniques

track the physical interface between different type materials. A recent application of interest

using this code was the SL-9 Jovian atmospheric entry calculation by Hassig, P. J. et al.,(1994) in

which a scheme for impactor breakup was implemented.

Modeling assumptions for the Venus atmosphere include: temperature profile from Seiff

(1983) -- 90 bar pressure, 733 K temperature at surface and treated as 10(3% CO2 modeled as a

non-ideal gas EOS with variable gamma, of form P = rho ( gamma - 1) e , and requires gamma
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versusT, andgammaversuse. For 111K <T < 3000Kgammaisa look-upfromgastables
(KeenanandKaye,1945)andforT> 3000K,gamma= 1.15.

A previousrelevantwork (Hassig,P.J., 1991;Hatfield,et al., 1992; Roddy, et al., 1992;)

examined the atmospheric response to a 10-km diameter asteroid travelling at 20km/s with

normal impact on Venus. With these results, we set out to investigate how the atmospheric

interaction on entry would scale with impactor size and interact with the cratering process. Our

initial calculation was to repeat the one above, only for the normal entry of a 1-km diameter

body. No provision for body deformation or breakup during atmospheric passage was

implemented for these calculations. The intent here is to vary impactor size over an

appreciable range to exercise the effect of the finite height of the atmosphere.

RESULTS

Normal Incidence Cases (2-D calculations)

As in the 10-kin case above, the 1-km diameter calculation was started with the leading

edge of the impactor located at 40 km above the Venusian surface and with U = 20km/s. For the

10-kin body the calculated velocity at impact was 19.5 km/s compared to 15.7km/s for the 1-km

body. Transit times through the atmosphere were 2.01 and 2.16 seconds respectively. Peak

pressure on the leading edge of the impactor ramped up to 125 kbar for the large one and 75 kbar

for the small one.

Using scaling laws for negligible atmosphere conditions from Schmidt and Housen (1987)

as shown schematically in Fig. 1. to estimate crater sizes and times, we get the following

comparison for the two events:

Impactor Transit Final crater Rf/a Formation Growth

diameter (2a) time radius {Rf) -- time {TI_ (km, sec]

1-km 2.01 sec 3.9 km 7.8 18.2 sec R = 1.7 t 0.287

10-km 2.16 sec 26.5 km 5.3 47.5 sec R--- 8.8 t 0.287

Figure 2 presents the transient pressure and density histories at crater's edge for the two

calculations. The results for the 10-km impactor are shown on the left and are compared with

those for the 1-kin impactor on the right. The time origin of the plots is at 2 seconds which

corresponds to the approximate impact time for both cases. The pressure has returned to

ambient at about 29 seconds for the larger one and at about 11 seconds for the smaller one.

Likewise, the density has returned to ambient at about 4.8 seconds for the larger one and at

about 3.3 seconds for the smaller one and continues to fall to about an order of magnitude below

ambient shortly thereafter. This suggests some simplification may be plausible for the

cratering simulation problem. Once the shock passes, most of the crater excavation takes place

at ambient pressure [92 bars), whereas the density is at least an order of magnitude below

ambient density (< 10 -3 g/cc) for the major portion of crater excavation. This indicates that

drag effects should be considerably less than those estimated for undisturbed ambient

conditions.
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Figure 3 shows the propagation of the flow field scaled by the impactor radius usually

referred to as cube root scaling. The results for the large impactor are shown by the bold curve

and can be seen to produce a stronger disturbance due to the higher contact velocity and slightly

out run those due to the smaller impactor represented by the thinner line. On a cube root basis,

the final crater size for the larger event is at an R/a of 5.3, whereas the crater for the smaller

event is at an R/a of 7.8. This difference is due to gravity. We can also examine the time scale of

the flow field relative to the crater excavation time or crater radius as shown in Fig. 4. The

times correspond to the same extent of relative crater excavation indicated by Fixed values of

range/final crater size. The heavy curve shown below the x-axis in each snapshot is the

transient crater profile for negligible atmosphere calculated from the growth equation

tabulated above. As can be seen in the first snapshot, when the transient crater radius is 23% of

the final value, the large impactor (heavy line) creates a many thousandfold overpressure

compared with a factor of about 80 for the smaller one (light line). For each, the region of

overpressure extends out to the edge of the evolving crater. As the transient crater approaches

half the final crater radius shown in the second snapshot, the shock wave has begun to pull out

in front of the crater lip and the pressure is about equal for both; but, still an order of magnitude

above ambient. Here the shock is further ahead for the smaller impactor. For the major part of

the volume excavation, beyond 0.59 radius with approximately 80% of the volume excavation

remaining, the pressure is nearing ambient. Note, that due to gravity, final radius/impactor

radius for the larger impactor is at an (Rf/a) of only 5.3 compared to 7.8 for the smaller one.

Consequently, it appears that the density variation more or less scales with evolving crater size

as is shown in Fig. 5 for comparable scaled range, shown here for (r/Rf) equal to about 0.73+.03.

The results for both impactors decay to values approaching earth ambient at about 20% of the

final crater volume excavation (V/Vf).

Figure 6 shows a way to compare pressure history in a scaled sense for the two sizes. Since

the smaller body is affected more by drag, it impacts at 15.7 km/s, whereas the larger one slows

only slightly to 19.5 km/s. This is significant in that the decrease in velocity results in an

increase in the effective value of rc2 = ga/U 2 when the impactor hits the surface If the

normalized pressure (2P/pU 2) history is scaled by the crater time of formation, an apparent

dynamic similarity is observed at FLied scaled range/crater radius (r/R t) > 0.35 and beyond.

Furthermore, in both cases the peak overpressure decays to ambient (90bars) at approximately

V/Vf = 0.5 as shown in Fig. 6. This has important implications for determining the stages of

crater formation that might be affected by shock overpressure.

It appears that the shock wave and high pressure regime occur over a very much shorter time

scale and possibly can be neglected for crater excavation considerations.

The original 10-kin impactor calculation performed by Hassig (1991) used a numerical

artifact to create a "transparent" target allowing the impactor to pass through the surface.

Hence, the calculated aerodynamic effects were due only to the entry shock wave. Concern was

expressed that vaporization might provide a significant contribution to the flow field.

Likewise, a compliant cratering surface would cause some vaporization while at the same time

absorbing a lot of the kinetic energy in the form of coupling to the ground and in crater

formation. To test the effects of these various boundary conditions, two additional calculations

were run. One had a rigid surface, causing the impactor to arrest, rebound and vaporize upon
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contact. The second used a coarsely-zoned quartz-like material to allow crater formation to

take place. In the early time, close in, there were significant differences. However at the range

of expected crater radius, the profiles all more or less coalesced as shown in Fig. 7. The rigid

boundary showed higher peak shock pressures and density spikes and the cratering target

showed the lowest peaks. However, over the time regime of interest for crater formation, there

is no significant difference.

45 ° Incidence Case (3-D calculation)

A preliminary 3-D calculation was also preformed to explore the influence of incidence

angle. To run such a problem on a personal computer such as a PC or a Mac did limit us to fairly

coarse zoning. The 3-D calculation was performed with approximately 26,000 nodes on a 32

meg 486 computer, which was about at maximum capacity. The results are given as case VEN09

in the appendix and are shown for times out to 300 secs. The 3-D calculation was performed

with some additional simplifications. There was no slow-down due to drag and the projectile

was allowed to enter from a height from a height of 32 km. This resulted in a time of impact of

about 2.26 seconds. Because of the coarser zoning necessary in the 3-D case, we reran the

normal impact case with comparable zoning for normal impact, the results are compared in

Figs. 8, 9 and 10. Figure 8 is the 3-D result for normal impact from case VEN09a showing

pressure histories at ranges of 1, 2, 3, 4 and 5 km. These can be compared to the Freer zoned 2-D

case, VEN07 in Fig. 9 and the comparable coarser zoned 2-D case VEN07a in Fig. 10. Looking at

the range of 5 km, there is some broadening of the pulse and the peak is down about 15% from

the 2-D Free zone case. The coarser zoned 2-D seems to be down even more in amplitude, like

30%. At the 2-km range, the agreement is even a little bit better. At least by this comparison,

we feel the pressure values should be pretty good with the coarser 3-D zoning. Fig. 11 is a map of

peak pressure ratio scaled by ambient pressure Po = 92 bars. This figure can be compared

directly with "Fig. 8, part a" from Takata et al. (1995) and reproduced here as Fig. 12. Her

scaled range was divided by 2 to account the radius ratio of 2:1 between the two calculations,

hers was for a 2-km diameter impactor, ours for a 1-km diameter impactor. The results are

quite comparable for a first cut. This needs further verification with comparisons of other her

other parameters plotted such as: (bl maximum shock density, (c) maximum horizontal gas

velocity, (d) maximum induced dynamic pressure and (e) maximum temperatures. Figure 13

contains the same information plotted as the more common overpressure parameter. Figure 14

is the accompanying time of arrival for the maximum shock overpressure versus range.

Laboratory validation and simulation

Another problem area that was scoped using the code in a 2-D configuration was to examine

different laboratory techniques to simulate impact cratering with large atmospheric pressure.

Conventional two-stage light gas guns are limited to maximum impact velocities of 7 km/sec or

less, particularly in the presence of a finite atmospheric pressure. At these velocities, the

atmospheric interaction is much less important than at velocities of the range of 20 to 30

km/sec applicable to planetary impacts. Our code calculations for the 1-kin diameter impactor

show that half of the kinetic energy was deposited in the atmosphere for normal (90 ° to the
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target) incidence angle. As the angle is reduced to 45 °, we expect even greater deceleration

resulting in more gasdynamic shock pressure interaction. To simulate these higher speeds and

pressure, we looked at test configurations as illustrated in Fig. 15. This is an economical set-up

that relies entirely on a geometric array of small explosives. We have pictured a series of

discrete detonators; that with a suitable sequential ignition source, can simulate any entry

velocity of interest. However, as seen in the results of the MAZe calculations, entry through the

Venus atmosphere takes on the order of 2 secs for a 20 km/sec impactor at normal incidence

angle. At a 45-degree incidence this would increase to about 3 seconds due to the longer path

length and additional deceleration. In either case this is small relative to the time of crater

excavation, which is 20 seconds for the 1-kin impactor and and 50 seconds for the 10-kin

impactor at normal incidence. To avoid the complication (and cost) of a ultra-fast ignition

requiring sub microsecond timing, an alternative is to use explosive detonator cord with a

nominal detonation speed of 7km/sec as shown in Fig. 16.

Energy dissipated in the atmosphere on entry for the two impactors.

Impactor attributes 1 km dia 10 km dia

a (km) 5.00E+04 5.00E+05

delta (g/cc) 2 2

mass (gm} 1.05E+ 15 1.05E+ 18

volume (km^3) 5.24E+ 14 5.24E+ 17

Uo (cm/s) 2.00E+06 2.00E+06

Uo ^2 4.00E+ 12 4.00E+ 12

Eo (ergs) 2.09E+27 2.09E+30

Impact conditions

Ui(cm/s) 1.57E+06 1.95E+06

uia2 2.46E+12 3.80E+12

Ei 1.29E+27 1.99E+30

delta E (ergs) 8.04E+26 1.03E+29

(delta E)/Eo 0.38 0.05

Using the value of "delta E" for the energy dissipated in the atmosphere from the above

table, 4 cases were run.

Case VEN 11 Line charge on Venus (8.04e26} r42a p135 simulation of l-km impactor

Case VEN11 Series of 9 explosions on Venus r43a p135 simulation of 1-km impactor

Case VEN11 Line charge on Venus (1.03e29) r52a p135 simulation of 10-km impactor

Case VEN 11 Series of 9 explosions on Venus(1.03e29) r53a p135 simulation of 10-km impactor

Results are cataloged in APPENDIX A. The energy was added directly to the air for the

spherical charges. It was uniformly distributed out to 500 m radius for the small charges and

out to 2.5 km for the large ones. Likewise for the line charges it was uniformly distributed out to

50 m for the smaller one and out to 5 km for the larger one.
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Target Material

Fig. 15 Experimental technique to simulate entry shock transient dynamic pressure and density fields
acting on the crater during formation for arbitrary angle of Incidence. By timing and sizing the charge
energy release it may be possible to simulate actual impact velocities of interest as large as 20km/sec or
more.
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Target Material

Fig. 16 Experimental technique to simulate entry shock transient dynamic pressure and density fields
acting on the crater during formation for arbitrary angle of incidence. By sizing the line charge energy
release it may be possible to create strong bow shock effect to test the code and observe the influence on

cratering dynamics and final size.
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CONCLUSIONS

1.) For cratering, it appears that the atmosphere pressure and density are nearly evacuated

prior to the time scale of crater excavation. (See pressure and density histories at appropriate

ranges for final crater size). This suggests that direct influence of large pressure and density

may be negligible.

2.) The main influence of the dense atmosphere is to slow down bodies smaller than 10 km in

diameter. This could skew the crater size counts because of the reduced impact energy for a

given size impactor. The slow-down needs to be examined quantitatively for dependence upon

angle of incidence.

3.) We appear to have preliminary agreement with the maximum shock pressure calculated by

Takata et al.(1995) for the 45 ° case. More comparisons need to be made to verify agreement for

other dependent quantities and angles of incidence.

4.) The simulation schemes provide a means to experimentally verify the code calculations

and can be done at laboratory scale. It may also provide a means to simulate impact velocities

above 7 km/sec.



APPENDIX A

The following table summarizes the calculations performed.

Output for the various cases is arranged in the following order.

Case Diameter Velocity Boundary.

Number (km} _ Condition

VEN01 10 20 "transparent"

VEN06 l0 20 "transparent"

VEN02 1 20 "transparent"

VEN07 1 20 "transparent"

VEN04 1 20 rigid

VEN05 1 20 crater

VEN09 l0 20 "transparent"

VEN 11 r42a 1 line charge rigid

VEN 11 r43a 1 9 charges rigid

VEN1 lr52a 10 line charge rigid

Remarks

normal incidence

repeat of VEN01

normal incidence

repeat of VEN02

compare b.c.

normal incidence

compare b.c.

normal incidence

45 ° incidence

2D simulation

2D simulation

2D simulation

25

page no.

26

49

71

77

82

107

119

133

VEN1 lr53a 10 9 charges rigid 2D simulation 147
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